If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-9b=-8
We move all terms to the left:
b^2-9b-(-8)=0
We add all the numbers together, and all the variables
b^2-9b+8=0
a = 1; b = -9; c = +8;
Δ = b2-4ac
Δ = -92-4·1·8
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-7}{2*1}=\frac{2}{2} =1 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+7}{2*1}=\frac{16}{2} =8 $
| -y+7y=14 | | 6z+7=6(z+5)−28 | | 3.2(x-5)-4.2(3x+1)=-108.18 | | X/5-5=x/2-2 | | (6x+4)=64 | | 3x²-2=10 | | (x+9)=68 | | 5(4+6x)=20+x | | -8n+20=-2(3n-3) | | x²-6x=40 | | 39-5x=4(3-8x) | | 1=((x+2)/(x-4))+((7x-42)/(x-4)) | | 14y-6=72 | | -(5-m)=30+8m | | -4x+5=7+x-6x | | ((x-4)/(4))+((x)/(3))=6 | | x/3-2x/12+4x-2=0 | | 2x+3x=-6x+22 | | (9)/(3x))=((4)/(x+2)) | | 12-h=27 | | 4x+13=-9-3(x | | -8(j-5)+9(j+5)=95 | | x.2x+10=2(-3x-3) | | 12/3m-4=21 | | 7-7y=-3y-2 | | 5-5x+7x=8x-12 | | 6y-8=2(3-4) | | 5-2(3x-7)=9x+4 | | 1-6r=13-4r | | -18z+12=20 | | x/5-5/9=x+5 | | 19+2=-3(2x-7) |